

 انشاء ملف على الحاسوب

Create file in computer
package first1;

import java.io.File;

import java.io.IOException;

public class NewClass {

 public static void main(String[] args) {

 File myObj = new File("filename.txt");

 try{

 myObj.createNewFile();

}

catch(IOException e){ }

}

}

 الكتابة على الملفات

package first1;

import java.io.FileWriter;

import java.io.IOException;

public class writeonfile {

 public static void main(String[] args) {

 try {

 FileWriter myWriter = new FileWriter("filename.txt");

 myWriter.write("Files in Java might be tricky, but it is fun enough!");

 myWriter.close();

 System.out.println("Successfully wrote to the file.");

 } catch (IOException e) {

 }

}

}

 لملفات القراءة من ا

package first1;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

public class readfile {

 public static void main(String[] args) {

 try {

 File myObj = new File("filename.txt");

 Scanner myReader = new Scanner(myObj);

 while (myReader.hasNextLine()) {

 String data = myReader.nextLine();

 System.out.println(data);

 }

 myReader.close();

 } catch (FileNotFoundException e) {

 System.out.println("An error occurred.");

 }

 }

}

 حذف ملف

package first1;

import java.io.File;

public class delfile {

public static void main(String[] args) {

 File myObj = new File("filename.txt");

 if (myObj.delete()) {

 System.out.println("Deleted the file: " + myObj.getName());

 } else {

 System.out.println("Failed to delete the file.");

 }

 }

}

 العمليات في لغة جافا

Arithmetic Operators

Java Assignment Operators

Java Comparison Operators

Java Logical Operators

The if Statement

Use the if statement to specify a block of Java code to be executed if a condition

is true.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

}

Example

if (20 > 18) {

 System.out.println("20 is greater than 18");

}

The else Statement

Use the else statement to specify a block of code to be executed if the condition

is false.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

int time = 20;

if (time < 18) {

 System.out.println("Good day.");

} else {

 System.out.println("Good evening.");

}

// Outputs "Good evening."

The else if Statement

Use the else if statement to specify a new condition if the first condition is false.

Syntax

if (condition1) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and condition2 is true

} else {

 // block of code to be executed if the condition1 is false and condition2 is false

}

int time = 22;

if (time < 10) {

 System.out.println("Good morning.");

} else if (time < 20) {

 System.out.println("Good day.");

} else {

 System.out.println("Good evening.");

}

// Outputs "Good evening."

Short Hand If...Else

There is also a short-hand if else, which is known as the ternary

operator because it consists of three operands. It can be used to replace
multiple lines of code with a single line. It is often used to replace simple if else

statements:

Syntax

variable = (condition) ? expressionTrue : expressionFalse;

Example

int time = 20;

if (time < 18) {

 System.out.println("Good day.");

} else {

 System.out.println("Good evening.");

}

You can simply write:

Example

int time = 20;

String result = (time < 18) ? "Good day." : "Good evening.";

System.out.println(result);

Java Switch Statements

Use the switch statement to select one of many code blocks to be executed.

Syntax

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

Ammar
Highlight

Ammar
Highlight

 break;

 default:

 // code block

}

int day = 4;

switch (day) {

 case 1:

 System.out.println("Monday");

 break;

 case 2:

 System.out.println("Tuesday");

 break;

 case 3:

 System.out.println("Wednesday");

 break;

 case 4:

 System.out.println("Thursday");

 break;

 case 5:

 System.out.println("Friday");

 break;

 case 6:

 System.out.println("Saturday");

 break;

 case 7:

 System.out.println("Sunday");

 break;

}

// Outputs "Thursday" (day 4)

The break Keyword

When Java reaches a break keyword, it breaks out of the switch block. This will

stop the execution of more code and case testing inside the block. When a match

is found, and the job is done, it's time for a break. There is no need for more

testing.

The default Keyword

The default keyword specifies some code to run if there is no case match:

Example

int day = 4;

switch (day) {

 case 6:

 System.out.println("Today is Saturday");

 break;

 case 7:

 System.out.println("Today is Sunday");

 break;

Ammar
Highlight

 default:

 System.out.println("Looking forward to the Weekend");

}

// Outputs "Looking forward to the Weekend"

Loops

Loops can execute a block of code as long as a specified condition is reached.

Loops are handy because they save time, reduce errors, and they make code

more readable.

Java While Loop

The while loop loops through a block of code as long as a specified condition

is true:

Syntax

while (condition) {

 // code block to be executed

}

Example

int i = 0;

while (i < 5) {

 System.out.println(i);

 i++;

}

Ammar
Highlight

The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code

block once, before checking if the condition is true, then it will repeat the loop as

long as the condition is true.

Syntax

do {

 // code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will always be executed at

least once, even if the condition is false, because the code block is executed

before the condition is tested:

Example

int i = 0;

do {

 System.out.println(i);

 i++;

}

while (i < 5);

java For Loop

When you know exactly how many times you want to loop through a block of

code, use the for loop instead of a while loop:

Syntax

for (statement 1; statement 2; statement 3) {

Ammar
Highlight

Ammar
Highlight

Ammar
Highlight

 // code block to be executed

}

Example

for (int i = 0; i < 5; i++) {

 System.out.println(i);

}

For-Each Loop

There is also a "for-each" loop, which is used exclusively to loop through elements

in an array:

Syntax

for (type variableName : arrayName) {

 // code block to be executed

}

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (String i : cars) {

 System.out.println(i);

}

Java Break

You have already seen the break statement used .It was used to "jump out" of

a switch statement.

The break statement can also be used to jump out of a loop.

Ammar
Highlight

Ammar
Highlight

Ammar
Highlight

This example stops the loop when i is equal to 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 System.out.println(i);

}

Java Continue

The continue statement breaks one iteration (in the loop), if a specified condition

occurs, and continues with the next iteration in the loop.

This example skips the value of 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

 System.out.println(i);

}

Break and Continue in While Loop

You can also use break and continue in while loops:

Break Example

Ammar
Highlight

Ammar
Highlight

int i = 0;

while (i < 10) {

 System.out.println(i);

 i++;

 if (i == 4) {

 break;

 }

}

Continue Example

int i = 0;

while (i < 10) {

 if (i == 4) {

 i++;

 continue;

 }

 System.out.println(i);

 i++;

}

Java Arrays

Arrays are used to store multiple values in a single variable, instead of declaring

separate variables for each value.

To declare an array, define the variable type with square brackets:

String [] cars;

We have now declared a variable that holds an array of strings. To insert values
to it, we can use an array literal - place the values in a comma-separated list,

inside curly braces:

String [] cars = {"Volvo", "BMW", "Ford", "Mazda"};

To create an array of integers, you could write:

int[] myNum = {10, 20, 30, 40};

Access the Elements of an Array

You access an array element by referring to the index number.

This statement accesses the value of the first element in cars:

Example

String [] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.println(cars[0]);

// Outputs Volvo

Change an Array Element

To change the value of a specific element, refer to the index number:

Example

Cars [0] = "Opel";

Example

String [] cars = {"Volvo", "BMW", "Ford", "Mazda"};

cars [0] = "Opel";

System.out.println(cars[0]);

// Now outputs Opel instead of Volvo

Array Length

To find out how many elements an array has, use the length property:

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.println(cars.length);

// Outputs 4

Loop Through an Array

You can loop through the array elements with the for loop, and use

the length property to specify how many times the loop should run.

The following example outputs all elements in the cars array:

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (int i = 0; i < cars.length; i++) {

 System.out.println(cars[i]);

}

Loop Through an Array with For-Each

There is also a "for-each" loop, which is used exclusively to loop through elements

in arrays:

Syntax

for (type variable : arrayname) {

 ...

}

The following example outputs all elements in the cars array, using a "for-
each" loop:

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (String i : cars) {

 System.out.println(i);

}

Multidimensional Arrays

A multidimensional array is an array of arrays.

To create a two-dimensional array, add each array within its own set of curly

braces:

Example

Int [][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

myNumbers is now an array with two arrays as its elements.

To access the elements of the myNumbers array, specify two indexes: one for the

array, and one for the element inside that array. This example accesses the third

element (2) in the second array (1) of myNumbers:

Example

Int [][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

int x = myNumbers[1][2];

System.out.println(x); // Outputs 7

Example

public class Main {

 public static void main(String[] args) {

 int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

 for (int i = 0; i < myNumbers.length; ++i) {

 for(int j = 0; j < myNumbers[i].length; ++j) {

 System.out.println(myNumbers[i][j]);

 }

 }

 }

}

